Vector Differential Calculus
1 Scalar Fields and Vector Fields
Scalar Functions


T  =  T( t, position ),  
independent of choice of coordinates 
Vector Functions


v  =  v( t, position )


v  =  v1 i + v2 j + v3 k
where the components of v depend on coordinate systems.

[Example]
Velocity Field of a Rotating Body

Angular velocity  =  

v  (   ( p
where p is the position vector ( a vector from origin to the point p )


  =   k,


p  =  x i + y j + z k   ( position vector )


v  =   EQ \b\bc\|(\a\co3\ar\hs10\vs6( i, j, k, 0, 0, w, x, y, z) )   =   (  y i + x j )

[Example]
Gravitational Force Field


| F |  =  G  EQ \f( m1 m2 ,r2) 

r  =  x i + y j + z k
where the origin is set at mass center of m1.

Force F acts towards the origin, i.e.,


Direction of F  =    EQ \f(r, |r| )  
( Unit Vector )


F  =   G  EQ \f( m1 m2 ,r2)  \f(r, |r| )   =    EQ \f( G m1 m2 ,r3)  r
2
Derivatives of a Vector Function

(1)
Vector Functions of One Variable

t  : scalar
(
v(t)  :  vector function


v(t)  =  v1(t) i + v2(t) j + v3(t) k
If v(t) is continuous, 
(
v1(t), v2(t) and v3(t) are continuous.


v ∫  v(t+t) - v(t)  =  v1(t) i + v2(t) j + v3(t) k

v'(t)  (   EQ \f(dv,  dt  )  =   EQ \o(lim,\s\do12(Dt(0)) \f( Dv ,Dt)   


=   EQ \f(  dv1  , dt ) i +  EQ \f(  dv2  , dt ) j +  EQ \f(  dv3  , dt ) k


=  Derivative of v(t) wrt t

Properties

 EQ \f(d , dt ) (v + u)  =   EQ \f(dv,  dt  ) +  EQ \f(du,  dt  )

 EQ \f(d , dt )(v)  =   EQ \f(da,dt)  v +   EQ \f(dv,  dt  )
(  : scalar )


 EQ \f(d , dt ) (u•v)  =   EQ \f(du,  dt  ) • v  +  u •  EQ \f(dv,  dt  )

 EQ \f(d , dt ) (u(v)  =   EQ \f(du,  dt  ) ( v  +  u (  EQ \f(dv,  dt  )

( u v w )'  =  ( u' v w )  + ( u v' w )  + ( u v w' )

[Exercise]
Show that the derivative of a vector of constant length, but changing direction, is perpendicular to the vector, i.e., |a| = constant and |a|( 0, then



 EQ \f(da, dt )      a
2)
Vector Functions of Multiple Variables


v  =  v(t, position)

or
v  =  v(t1, t2, . . . )



=  v1(t1, t2, . . . ) i + v2(t1, t2, . . . ) j + v3(t1, t2, . . . ) k
Partial derivative of v wrt tn,  EQ \f( (v ,  (tn  ) , is 


 EQ \f((v, (tn )   =   EQ \f((v1, (tn )  i +  EQ \f((v2, (tn )  j +  EQ \f((v3, (tn )  k

2 Position Vector r(t)
Definition
Position Vector:
The vector from the origin O to the point P(x,y,z), corresponding to a specified value of t (parameter).

r  =  x(t) i + y(t) j + z(t) k
A curve in space can be represented by a position vector. This is called parametric representation of the curve and t is the parameter of representation. 
[Example]
r =  cos t i + sin t j

|r|  =   EQ \r(cos2t + sin2t)   =  1


x  =  cos t 

y  =  sin t


x2 + y2  =  1
(
a unit circle

[Example]
ra(t) =  t i + t2 j

x  =  t

y = t2
(
x2  =  y


rb(t)  =  - 2t i + 4 t2 j
(
x2  =  y


rc(t) = t2 i + t4 j
(
x2  =  y

Are ra, rb and rc the same curve?

Notice that this representation gives an orientation of the curve C, i.e., a direction of traveling along C so that t increases.

Two other kinds of representations suitable for space curves:

(1) y=f(x) (projection of C into xy-plane) and z=g(x) (projection of C into xz-plane)
(2) F(x,y,z)=0  and G(x,y,z)=0 (intersection of two surfaces)
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(or a pair of equations with y or with z as the independent variable) and
3) F(x,y,2) =0, G(x, y,2) = 0.
Geometrically, y = f(x) is the projection of C into the xy-plane and z = g(x) the projection
into the xz-plane. Equation (3) gives C as the intersection of two surfaces F(x, y, z) = 0
and G(x, y, ) = 0.
Typical Examples. Kinds of Curves
EXAMPLE 1  Straight line
A straight line L through a point A with position vector a in the direction of a constant vector b (see Fig. 183)
can be represented in the form
“) r(t) =a+ b =[a; + thy, ag + thy, ag+ thg].
If b is a unit vector, its components are the direction cosines of L. In this case, t| measures the distance of the
points of L from A. For instance, the straight line in the xy-plane through A: (3, 2) having slope 1 is (sketch it)
r() =13, 2, 0]+¢«¢[1, 1, 0]=[3+1¢ 2+1 O] <
Fig. 183. Parametric representation
of a straight line
EXAMPLE 2 Ellipse, circle
The vector function
5) r(f) = [acost, bsint, 0] =acosti+ bsintj
represents an ellipse in the xy-plane with center at the origin and principal axes in the direction of the x and y
axes. In fact, since cos2t + sin®t = 1, we obtain from (5)
X2 g2
Py 2= 1, z=0.
If b = a, then (5) represents a circle of radius a. <
A plane curve is a curve that lies in a plane in space. A curve that is not plane is called
a twisted curve. A standard example is the following.
EXAMPLE 3 Circular helix

The twisted curve C represented by the vector function

6) r(t) = [acost, asint, ct] =acosti+ asintj+ ctk (c #0)
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Fig. 184. Right-handed Fig. 185. Left-handed
circular helix circular helix

is called a circular helix. It lies on the cylinder x2 + y2 = 4. If ¢ > 0, the helix is shaped like a right-handed
screw (Fig. 184). If ¢ < 0, it looks like a left-handed screw (Fig. 185). If ¢ = 0, then (6) is a circle. 4

A simple curve is a curve without multiple points, that is, without points at which the
curve intersects or touches itself. Circle and helix are simple. Figure 186 shows curves
that are not simple. An example is [sin 2¢, cost, 0]. Can you sketch it?

An arc of a curve is the portion between any two points of the curve. For simplicity,
we say “curve” for curves as well as for arcs.

SO esan ¥

Fig. 186. Curves with multiple points

Comment on parameter. A curve C may be given by various vector functions. If C is
given by (1) and we set t = h(t*), we obtain a new vector function ¥(¢*) representing C.
In mechanics, when ¢ is time, this means that we change the motion of a body in time
without changing its path. Example. For the parabola r(r) = [r, 2], by setting ¢ = —2¢*,
we get the new representation ¥(t¥*) = r(—2t*) = [—2r%, 4r%?]. Do you see that
t = —2¢* reverses the orientation? Why? (Answer: It has a negative derivative —2.) <«

The next idea is the approximation of a curve by straight lines, leading to tangents and
to a definition of length. Tangents are straight lines touching a curve, as follows.

Tangent to a Curve

The tangent to a curve C at a point P of C is the limiting position of a straight line L
through P and a point Q of C as Q approaches P along C. See Fig. 187.

If C is given by r(¢), with P and Q corresponding to ¢ and ¢ + At, respectively, then
the following vector has the direction of L:

1
E [r(t + Ap) — r(p)].




Derivative of a Position Vector
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r(t)  =  x(t) i + y(t) j + z(t) k

r'(t)  =   EQ \f( dr(t) ,dt)   =   EQ \f( dx ,dt)  i +  EQ \f( dy ,dt)  j +  EQ \f( dz ,dt)  k
Physical Meaning of r'(t)
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r'(t)  =   EQ \o(lim,\s\do10(Dt®0)) \f( r(t+Dt) - r(t) ,Dt)   =   EQ \o(lim,\s\do10(Dt®0)) \f(Dr(t), Dt ) 
  
r'(t) is tangent to the curve at the point P ( Note that r'(t)•r(t) is not necessarily 0 ).


r'(t)  : 
Tangent Vector of C at P


 EQ \f( r'(t) , |r'(t)| )   :  
Unit Tangent Vector of C at P u(t)

then
r +  r'(t) : 
Position Vector of a Point T on the Tangent Line

Length of a Curve

Length of a Curve
l  =   EQ \i(a,b, \r(r'•r') ) dt  



(from t = a to b)


Arc Length Function
s(t)  =   EQ \i(a,t, \r(r'•r') d\o(t,\s\up8(~)))  
The choice of a is arbitrary; changing a means changing s by a constant. Differentiate s(t) w.r.t. t and then square it, we obtain
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Relationship between t and s

Note that the length of dr is ds, i.e.,


ds  =  |dr|

or
( ds )2  =  dr • dr 

In addition, dr  =  dx i + dy j + dz k
we have  dr • dr  =  ( dx )2  +  ( dy )2  +  ( dz )2

(ds)2  =  (dx)2  +  (dy)2  +  (dz)2
Thus, the arc length function s can be related to the parameter t as


ds  =   EQ \r( (dx)2 + (dy)2 + (dz)2 ) 

  
=   EQ \r( \b\bc\[(\f(dx,dt))\s\up16(2) + \b\bc\[(\f(dy,dt))\s\up16(2) + \b\bc\[(\f(dz,dt))\s\up16(2) )     dt



ds =   EQ \r( r'(t) • r'(t) ) dt

Note that the unit tangent vector at P on the curve r(t) is given by


u  =   EQ \f(r'(t), |r'(t)| )   =   EQ \f( \f( dx ,dt) i + \f( dy ,dt) j + \f( dz ,dt) k ,\f( ds ,dt)) 


=   EQ \f(dx,ds)  i +  EQ \f(dy,ds)  j +  EQ \f(dz,ds)  k  =   EQ \f(dr(s), ds ) 
Hence, the derivative of r with respective to s ( the arc length function ) is the unit tangent vector.
[Exercise] 
Show that u   EQ \f(du, ds )     ( Hint:  |u| = 1 ) 
[Example]
Calculate the length of the arc of the curve r(t) = ( 2t - t2 ) i +  EQ \f(8, 3 )  t3/2 j between t = 1 to t = 3.
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[Solution]
r'(t)  =  ( 2 - 2 t ) i + 4  EQ \r(t)  j

|r'(t)| =  2 ( t + 1 )


l  =   EQ \i(1,3, 2(t+1) dt)   =  12

[Exercise]
r(t)  =  cos t  i  +  sin t  j  +  t  k
Calculate (1) the unit tangent vector u(t) at t = /3 and (2) the length of the arc from t = 0 to t = 4.
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[Solution]
u(/3)  =    EQ \f(\r(3),2\r(2))  i +  EQ \f(1,2\r(2))  j +  EQ \f(1,\r(2))  k


l  =  4 EQ \r(2)  
[Example]
Express r in terms of arc length function s if r(t) = ( 2t - t2 ) i +  EQ \f(8, 3 )  t3/2 j   

[Solution]
Take t = 0, (x,y) = (0,0) as initial point, then


 EQ \f(ds,dt)   = |r'(t)|  =  2 ( t + 1 )


s  =   EQ \i(0,t, 2 ( \o(t,\s\up6(~)) + 1 ) d\o(t,\s\up6(~)) )   =  t2 + 2 t

(
t2 + 2 t - s = 0

and
t =  EQ \r( 1 + s )   - 1  ( take t  0 )

thus
x  =  2 t - t2   =  4  EQ \r( 1 + s )  - 4 - s


y  =   EQ \f(8, 3 )  t3/2  =   EQ \f(8, 3 ) ( \r( 1 + s ) - 1 )\s\up10(3/2) 

r(s)  =  ( 4  EQ \r(1+s)  - 4 - s ) i 



+  EQ \f(8, 3 ) ( \r( 1 + s ) - 1 )\s\up10(3/2)  j
4
Particle Path, Velocity and Acceleration

Particle Path
Particle moves with its position vector r(t)
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C :  particle path

Velocity
v  =   EQ \f(dr, dt )   =  r'

where t: time

|v|  =   EQ \r(r'•r' )   =   EQ \f(ds, dt )   =  arc length/unit time  =  speed

Note that v  =  u  EQ \f(ds, dt )   =  v u  
( v =  EQ \f(ds, dt )   =  speed )

where u is a unit tangent vector.

Acceleration

a  (   EQ \f(dv, dt )   =   EQ \f(d2r, dt2 ) 
Since
v  =  u  EQ \f(ds, dt )   =  v u

a  =   EQ \f(dv, dt )  u  +  v  EQ \f(du, dt ) 


=   EQ \f(dv, dt )  u + v2  EQ \f(du, ds )  
( since v =  EQ \f(ds, dt )   )


=   EQ \f(d2s, dt2 )  u + ( EQ \f(ds,  dt  )) EQ \s\up10(2) EQ \f(du, ds )  
 

a contains
  EQ \b\lc\{( \a\al(tangential acceleration   \f(d2s, dt2 ) u  =  \f(dv, dt ) u, ,normal acceleration     ( \f(ds, dt ) )\s\up10(2) \f(du, ds )  ) ) 
Alternatively, the tangential acceleration atang can be obtained by calculating the component of a in the tangent direction ( u, where u = v/|v| ) , i.e., 


atang  =  ( a•u ) u  =   EQ \f( ( a•v ) v , |v|2 ) 
The normal acceleration anormal can then be calculated by


anormal  =  a  -  atang 

[Example]  


r(t)  =  cos t i + sin t j

v(t)  =  - sin t i + cos t j

v(t)  =  |v(t)|  =  1

thus,  dv/dt  =  0,   speed = constant


a(t)  =  - cos t i  -  sin t j  ( 0
Note that a(t) is normal to the particle path.

5
Curvature and Torsion of a Curve

Definition
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r(s)  :  position vector,   s: arc length

u(s)  (   EQ \f(dr(s), ds )   :  unit tangent vector

Since u   EQ \f(du, ds )  ( ( u'(s) ) 
We define


p  (   EQ \f(1, k ) \f(du(s), ds )   
where


p  =  unit principal normal vector


  =   EQ \b\bc\|(\f(du(s), ds ))   =  |u'(s)|  =  |r''(s)|  =  curvature


  (   EQ \f(1, k )   =  radius of curvature

ds  =  | dr | 


 EQ \f( ds ,  dt  )   =  | r(t)' |
( The relationship between s and t can then be obtained. )

and
u(t)  =   EQ \f( r(t)' , | r(t)' |  ) 

(s)  =   EQ \b\bc\|( \f( du(s) , ds ) ) =   EQ \f( | du/dt | ,  ds/dt  )  
                    = a measure of the deviation of space curve from its tangent.
Also, we define


b  (  u ( p  =  unit binormal vector

[Example]  Find the radius of curvature of a circle on x-y plane.

[Sol'n]

The position vector of a circle is


r  =  x i + yj  =  R cos i + R sin j
Since s (arc length) = R ,     =  EQ \f(s,  R  )
 
r(s)  =  R cos( EQ \f(s,  R  )) i + R sin( EQ \f(s,  R  )) j

r'(s)  =   EQ \f(dr, ds )   =  - sin( EQ \f(s,  R  )) i + cos( EQ \f(s,  R  )) j

r''(s)  =  -  EQ \f(1, R )  cos( EQ \f(s,  R  )) i -  EQ \f(1, R )  sin( EQ \f(s,  R  )) j

|r''(s)|  =   EQ \f(1, R ) 

(s)  =   EQ \f(1, k )   =   EQ \f(1, |r''(s)| )   =  R

[Exercise]  If C is defined by r(t) = x(t) i + y(t) j with r'(t) ( 0, the curvature at the point r(t) is
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(t)  =   EQ \f(\r( |r'|2|r''|2 - (r'•r'')2 ), |r(t)|3 ) =   EQ \f(| x'y'' - y'x'' |, [(x')2 + (y')2]3/2 )   
or
(t)  =   EQ \f(| r' ´ r'' |, |r'|3 ) 
where r' and r'' are derivatives of r wrt t.

[Solution]


 EQ \f(ds,dt)   =  | r'(t)|


u(t)  =   EQ \f( r'(t) ,| r'(t) |) 

(s)  =   EQ \b\bc\|( \f(du, ds ) )   =   EQ \f(|du/dt|, |ds/dt| ) 


=   EQ \f(1, |r'(t)| ) \b\bc\|( \f(d ,dt) \b\bc\[( \f(r'(t), |r'(t)| ) ) ) 


=   EQ \f( ||r'(t)|r''(t) - r'(t)g(t)| ,|r'(t)|3) 
where



g(t)  =   EQ \f(d ,dt)  |r'(t)|  =   EQ \f(d ,dt)  [ (x')2 + (y')2 ]1/2


=   EQ \f(x'x'' + y'y'', \r( (x')2 + (y')2 ) )   =   EQ \f(r'¥r'', |r'| ) 
Thus, 


(s)  =   EQ \f( \r( (|r'|2r'' - gr')¥(|r'|r'' - gr') ) , | r'(t) |3 ) 


=    EQ \f( \r( |r'|2|r''|2 - 2g|r'|(r'¥r'') + g2|r'|2 ) , | r'(t) |3 ) 


=    EQ \f(\r( |r'|2|r''|2 - (r'¥r'')2 ), |r(t)|3 ) 
[Exercise]  
r  =  cos t i + sin t j + t k

Find  (s), p(s), u(s) and b(s)

[Answer]  ( Please check!! )


u(s)  =   EQ \f( - sin(s/\r(2)) ,\r(2))  i  +   EQ \f( cos(s/\r(2)) ,\r(2))  j +  EQ \f(1, \r(2) )  k

p(s)  =  - cos  EQ \f(s, \r(2) )  i - sin  EQ \f(s, \r(2) )  j

(s)  =   EQ \f(1, 2 ) 

b(s)  =    EQ \f( sin(s/\r(2)) ,\r(2))  i  +   EQ \f( - cos(s/\r(2)) ,\r(2))  j +  EQ \f(1, \r(2) )  k 

Torsion

r(s) : Curve


u(s)  (   EQ \f( dr(s) ,ds)    :  unit tangent vector


p(s)  (   EQ \f(1, k ) \f(du, ds )   :  unit principal normal vector


b(s)  (  u ( p  :  unit binormal vector


b'  (   EQ \f( db(s) ,ds)  =  ??

Since b u     
 (
b•u  =  0

and
(b•u)'  =  0       ( wrt s )

or
b'•u + b•u'  =  0

But
u'  =   p which is  b
(
b•u'  =  0


b'•u  =  0   or       b'u
In addition, b'b  (recall that |b|  =  1  so that b'b)


b'  =  -  p
where  is the torsion which measures the rate of twisting of curve C  or the deviation of curve C from the osculating plane ( |b'|  =  |- p|  =  || ). The minus sign is conventional to make torsion positive for a right-handed helix.
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6
The Chain Rule and the Mean Value Theorem
(1)
Chain Rule

Continuity
Let f(x, y) be defined at every point (x, y) in a neighborhood of (x0, y0), then f(x, y) is continuous at (x0, y0) 

 EQ \o(lim,\s\do10((x,y)®(x0,y0)))   f(x, y)  =  f(x0, y0)

Partial Derivatives of f

 EQ \f( (f ,(x)   =   EQ \o(lim,\s\do10(Dx®0))  \f( f(x+Dx,y) - f(x,y) ,Dx) 

 EQ \f( (f ,(y)   =   EQ \o(lim,\s\do10(Dy®0))  \f( f(x,y+Dy) - f(x,y) ,Dy) 
Chain Rule

(i)
x = x(t), y = y(t)  and f = f(x, y)

 EQ \f(df, dt )   =   EQ \f((f, (x ) \f(dx, dt )   +   EQ \f((f, (y ) \f(dy, dt ) 
(ii)
x = x(u, v),  y = y(u, v),  and f  =  f(x, y)

 EQ \f( (f ,(u)   =   EQ \f((f, (x ) \f((x, (u )  +  EQ \f((f, (y ) \f((y, (u ) 
 EQ \f( (f ,(v)   =   EQ \f((f, (x ) \f((x, (v )  +  EQ \f((f, (y ) \f((y, (v ) 
(2)
Mean Value Theorem

f(x, y),  EQ \f((f, (x )  , and  EQ \f((f, (y )  are continuous in the domain D, and that line (x0, y0),  (x0+h, y0+k) is in D, then


f(x0+h, y0+k) - f(x0, y0)  =  h  EQ \f((f, (x )\s\do12(|x*)   + k  EQ \f((f, (y )\s\do12(|y*) 
where (x*, y*) lies on the line (x0, y0),  (x0+h, y0+k).

7
Gradients, Directional Derivatives
Definition of Gradient - Mathematically ( Computationally )


f  =  f(x, y, z)

The gradient of f , (f (del f, or grad f) is given by the vector field


(f  =   EQ \f((f, (x )  i +  EQ \f((f, (y )  j +  EQ \f((f, (z )  k
where ( (nabla, del) is a differential operator.


(  (   EQ \f(( , (x )  i  +  EQ \f(( , (y )  j  +   EQ \f(( , (z )  k

[Example]    f  =  x y,   (f  =  y i + x j
Properties:  ( is a linear operator:


((f) =  ((f)


((f+g)  =  (f + (g

Physical Meaning  -  Directional Derivative

f  =  f(x, y, z)   a scalar function


r  =  x i + y j + z k     position vector
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The difference of f between any two points r and r+r 


f  =   EQ \f((f, (x )  x  +  EQ \f((f, (y )  y  +   EQ \f((f, (z )  z  +  . . . (Higher order terms)



=  (f•r  +  . . .

 EQ \b\bc\((\a\al( recall that (f  =  \f((f, (x ) i + \f((f, (y ) j + \f((f, (z ) k  and ,          Dr = Dx i + Dy j + Dz k)) 
If we let s = |r|, then


 EQ \f(Df, Ds )   =   EQ \f((f, (x ) \f(Dx, Ds )   +   EQ \f((f, (y ) \f(Dy, Ds )   +   EQ \f((f, (z ) \f(Dz, Ds )   +  . . .

(
 EQ \o(lim,\s\do12(Ds®0))  \f(Df, Ds )   =  derivative of f in the direction of r


=    EQ \f((f, (x ) \f(dx, ds )   +   EQ \f((f, (y ) \f(dy, ds )   +   EQ \f((f, (z ) \f(dz, ds )   


=  ( EQ \f((f, (x )  i +  EQ \f((f, (y )  j +  EQ \f((f, (z )  k )•(  EQ \f(dx, ds )  i +  EQ \f(dy, ds )  j +  EQ \f(dz, ds )  k )


=  (f• EQ \f(dr, ds ) 
Note that in the above expression,  EQ \f(dr, ds )   is the unit vector in the direction of dr.


 EQ \f(df, ds )   =  (f• EQ \f(dr, ds ) 
or
df  =  (f•dr
Recall the projection of a onto b:
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Since dr/ds is the unit vector, we have


 EQ \f(df, ds )   =  (f• EQ \f(dr, ds )   =  projection of (f in the direction of  EQ \f(dr, ds ) 


=  Directional Derivative of f in the direction of  EQ \f(dr, ds ) 
[Example]
Let f = x y2, calculate the directional derivative of f in the direction of b = 2 i + 3 j at point (4, -1).

[Solution] 

A unit vector in the direction b is given by


u =  EQ \f(2,\r(13))  i +  EQ \f(3,\r(13))  j
Since (f =  y2 i + 2 x y j

 EQ \f(df, ds )   =  (f•u  =   EQ \f( 2y2 + 6xy ,\r(13)) \s\do12(|(4,-1))   =  -  EQ \f(22,  \r(13)  ) 
[Exercise]  f = x ln y - e EQ \s\up8(xz3)    find the directional derivative of f in the direction of b = i - j + 3 k
Physical Meaning - Maximum Increases ( Geometrically )
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Since dr/ds is a unit vector, |dr/ds| = 1

 
(f• EQ \f(dr, ds )   =   EQ \f(df, ds )   =  |(f| cos 
thus the directional derivative of f in the direction dr/ds is the component of the gradient of the f in the direction dr/ds.

Since
 EQ \f(df, ds )   =  |(f| cos 
  EQ \f(df, ds )  has a maximum if cos   = 1,  or  = 0.

Thus, f increases most rapidly in the direction of its gradient.  Furthermore, f is stationary (i.e., df = 0) in the direction perpendicular to its gradient.
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f = constant on the surface (contour)


df = 0 =  EQ \f((f, (x )  dx +  EQ \f((f, (y )  dy +  EQ \f((f, (z )  dz  =  (f•dr
(
dr  (f   where dr  is on the surface f = constant.

[Example]  Find the normal of the curve


f(x, y) = ln(x2 + y2)  =  constant

Since (f  the surface of f = constant,


(f  =   EQ \f((f, (x )  i +  EQ \f((f, (y )  j  =   EQ \f(2x, x2 + y2 )  i +  EQ \f(2y, x2 + y2 )  j
[Example]  Find the unit normal to the surface of 


f(x, y, z) = x y3 z2 = 4   at (-1, -1, 2).

Now
(f  =  ( y3 z2 i + 3 x y2 z2 j + 2 x y3 z k ) EQ \s\do12(|(-1,-1,2)) 


=  - 4 i - 12 j + 4 k

n =  EQ \f((f, |(f| )   =  -  EQ \f(1,\r(11))  i -  EQ \f(3,\r(11))  j +  EQ \f(1,\r(11))  k
8
Divergence and Curl of a Vector Field

Definitions
If 
v  =  v1 i + v2 j + v3 k
then
(•v  =   EQ \b\bc\{( i \f(( ,(x) + j \f(( ,(y) + k \f(( ,(z) ) •{ v1 i + v2 j + v3 k }



=   EQ \f((v1, (x )  +  EQ \f((v2, (y )  +  EQ \f((v3, (z ) 


=  divergence of the vector v  =  div v

( ( v  =   EQ \b\bc\{( i \f(( ,(x) + j \f(( ,(y) + k \f(( ,(z) )  ( { v1 i + v2 j + v3 k }



=   EQ \b\bc\|(\a\co3\vs10\hs12( i, j, k, \f(( ,(x), \f(( ,(y), \f(( ,(z), v1, v2, v3 )) 


=  i  EQ \b\bc\[( \f((v3, (y ) - \f((v2, (z ) )  + j  EQ \b\bc\[( \f((v1, (z ) - \f((v3, (x ) )  + k  EQ \b\bc\[( \f((v2, (x ) - \f((v1, (y ) ) 


= Curl of v
If 
f = f(x, y, z)

then
(•((f)  =   EQ \f((2f, (x2 )   +   EQ \f((2f, (y2 )   +   EQ \f((2f, (z2 ) 
or
(2f  =  div(grad f)  =  Laplacian of f

Physical Meanings
(i)
Divergence:  ( Read p. 454~456 of the Textbook )



( Will be discussed in detail in Unit Op Course )


  =  density,        v =  mass flux ( mass/(area)(time) )


(•(v)  =  rate of loss per unit volume


 EQ \f((r, (t )   =  - (•(v)         ( Equation of Continuity

(a)
 = constant  (incompressible fluids)  ( (•v = 0

(b)
At steady state (i.e., (/(t = 0), (  (•(v) = 0

(ii)
Curl
(
rotational and irrotational flows (p. 458 of Textbook)

Some Important Identities (Exercises)


(•v  =  (•v + v•(

((v  =  ((v + ((v

(•(u(v)  =  v•((u - u•((v

(( (u(v)  =  v•(u - u•(v + u((•v) - v((•u)


((u•v)  =  u•(v + v•(u + u( (((v) + v( (((u)


(( (()  =  curl grad   =  0

(•(((v)  =  div curl v  =  0


(( (((v)  =  curl curl v  =  (((•v) - (•((v)




=  grad div v - (2v

(•((1((2)  =  0

Note that here v•(u   (  EQ \b\bc\{( vx\f(( ,(x) + vy\f(( ,(y) + vz\f(( ,(z) )  u
9
Vector Analysis in Curvilinear Coordinates
(Orthogonal Coordinate Systems)

(1)
Coordinates

RCC
Cylindrical
Spherical

(x, y, z)
(r, , z)
(r, , )

x1, x2, x3
x1 = r cos
x1 = r cos sin

x2 = r sin
x2 = r sin sin

x3 = z
x3 = r cos
 [image: image19.png](x,y,2) or (r,6,2)
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In general,
x1 = x1(q1, q2, q3)


x2 = x2(q1, q2, q3)


x3 = x3(q1, q2, q3)

or
q1 = q1(x1, x2, x3)


q2 = q2(x1, x2, x3)


q3 = q3(x1, x2, x3)

Coordinate Surfaces:  q1 = constant, or q2 = constant, or q3 = constant

Coordinate Line (or Coordinate Curve):  q1 = constant and q2 = constant, only q3 varies 
(
coordinate line q3
Orthogonal:  coordinate curves are mutually perpendicular

(2)
Position Vector and Unit Base Vectors


r  =  x i + y j + z k  :   position vector

A tangent vector e1 to the q1 curve at p is given by


e1  =   EQ \f((r, (q1 )   ;
e2  =   EQ \f((r, (q2 )   ;
e3  =   EQ \f((r, (q3 ) 
or
e1  =   EQ \f((r, (q1 )   =   EQ \f((r, (s1 ) \f(ds1, dq1 )        (Natural Base Vectors) 
where s1 is the arc length along the q1 curve.  Note that  EQ \f((r, (s1 )  is a unit vector, u1, we have


e1 = h1 1
where 1 is the unit vector (physical base vector) tangent to the q1 curve in the direction of increasing arc length, and


h1  (   EQ \f(ds1, dq1 )   =  length of e1
Similarly, 


e1  =  h1 1 ;
e2  =  h2 2  ; 
e3  =  h3 3



h1  =   EQ \f(ds1, dq1 )   =   EQ \b\bc\|(\f((r, (q1 ))   =  length of e1

h2  =   EQ \f(ds2, dq2 )   =   EQ \b\bc\|(\f((r, (q2 ))   =  length of e2


h3  =   EQ \f(ds3, dq3 )   =   EQ \b\bc\|(\f((r, (q3 ))   =  length of e3
where h1, h2 and h3 are scale factors.

For example, in cylindrical coordinates


(q1, q2, q3)  =  (r, , z)


r  =  x i + y j + z k  =  r cos i + r sin j + z k


=  q1 cosq2 i + q1 sinq2 j + q3 k

h1  =   EQ \b\bc\|(\f((r, (q1 ))   =  | cosq2 i + sinq2 j |  =  1


h2  =   EQ \b\bc\|(\f((r, (q2 ))   =  | - q1 sinq2 i + q1 cosq2 j |  =  q1 = r


h3  =   EQ \b\bc\|(\f((r, (q3 ))   =  | k |  =  1

[Exercise]  Show that in spherical coordinate systems


(q1, q2, q3)  =  (r, , )


h1  =  1  ;
h2  =  r sin  ;
h3  =  r

[Hint]  
The position vector r in spherical coordinate system can be written as



r  =  r cos sin i + r sin sin j + r cos k
(3)
Arc Length Along a Curve in Any Direction

In RCC,     (ds)2  =  (dx)2 + (dy)2 + (dz)2
In general,


 EQ \f(dr, ds )   =   EQ \f((r, (q1 ) \f(dq1,ds)   +   EQ \f((r, (q2 ) \f(dq2,ds)   +   EQ \f((r, (q3 ) \f(dq3,ds) 


=  e1  EQ \f(dq1,ds)   +  e2  EQ \f(dq2,ds)   +  e3  EQ \f(dq3,ds)   
But since    EQ \b\bc\|(\f(dr,ds))   =  1
(
 EQ \f(dr,ds)  •  EQ \f(dr,ds)   =  1

or
 EQ \b\bc\[( e1 \f(dq1,ds)  +  e2 \f(dq2,ds)  +  e3 \f(dq3,ds) ) •



 EQ \b\bc\[( e1 \f(dq1,ds)  +  e2 \f(dq2,ds)  +  e3 \f(dq3,ds) )   =  1

In addition, for orthogonal coordinate systems,


e1•e2  =  e2•e3  =  e3•e1  =  0


e1•e1 (dq1)2  +  e2•e2 (dq2)2  +  e3•e3 (dq3)2  =  ds2
or
ds2  =  h12 dq12  +  h22 dq22  + h32 dq32
( Note that e1•e1  =  h1 1 • h1 1  =  h12 )

Cylindrical:

(ds)2  =  (dr)2  +  r2 (d)2  +  (dz)2
Spherical:

(ds)2  =  (dr)2  +  r2 sin2 (d)2  +  r2 (d)2
(4)
Element of Volume and Element of Surface
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In RCC system,  dV  =  dx dy dz

but can we write dV = dr d  dz in cylindrical systems?

(i)
Element of Volume, dV


dr  =   EQ \f((r, (q1 )  dq1  +   EQ \f((r, (q2 )  dq2  +   EQ \f((r, (q3 )  dq3


=  e1 dq1  +  e2 dq2  + e3 dq3
The element of volume is given by


dV  =  ( e1dq1 ( e2dq2 • e3dq3 )



=  ( 1(2•3 ) h1h2h3 dq1dq2dq3


=  h1h2h3 dq1dq2dq3
( Since  1(2•3 = 1 for orthogonal coordinate systems)

RCC:  
dV  =  dx dy dz

Cylindrical:
dV  =  r dr d dz

Spherical:
dV  =  r2 sin dr d d
(ii)
Element of Surface, dS

On the surface q1 = constant, the element of surface area dS1 is given by


dS1  =  | e2 dq2 ( e3 dq3 |



=  | h2 2 dq2 ( h3 3 dq3 |



=  h2 h3 dq2 dq3
Similarly,


dS2  =  h3 h1 dq3 dq1

dS3  =  h1 h2 dq1 dq2
Cylindrical Coordinate:


dSr  =  r d dz


dS  =  dr dz


dSz  =  r dr d
Spherical Coordinate:


dSr  =  r2 sin d d

dS  =  r dr d

dS  =  r sin dr d
(5)
Gradients


df  =  (f•dr

df  =   EQ \f((f,(q1)  dq1 +  EQ \f((f,(q2)  dq2 +  EQ \f((f,(q3)  dq3 

and
dr  =  e1 dq1 + e2 dq2 +e3 dq3 



=  h1 1 dq1 + h2 2 dq2 + h3 3 dq3 

If we now write


(f  =  1 1 + 2 2 + 3 3
we need to determine 1, 2 and 3:


df  =  (f•dr

 EQ \f((f,(q1)  dq1 +  EQ \f((f,(q2)  dq2 +  EQ \f((f,(q3)  dq3  



=  h1 1 dq1 + h2 2 dq2 + h3 3 dq3
Since dq1, dq2 and dq3 are linearly independent, we have


1  =   EQ \f(1, h1 ) \f((f,(q1)   ;  2  =   EQ \f(1, h2 ) \f((f,(q2)   ;  3  =   EQ \f(1, h3 ) \f((f,(q3)  

(  =   EQ \f(d1, h1 ) \f((  ,(q1)   +   EQ \f(d2, h2 ) \f((  ,(q2)   +   EQ \f(d3, h3 ) \f((  ,(q3)   


=  1  EQ \f((  ,(s1)   +  2  EQ \f((  ,(s2)   +  3  EQ \f((  ,(s3) 
(
(f  =   EQ \f(d1, h1 ) \f((f ,(q1)   +   EQ \f(d2, h2 ) \f((f ,(q2)   +   EQ \f(d3, h3 ) \f((f ,(q3) 
For example, in cylindrical coordinates


(f  =   EQ \f((f,(r)  r  +   EQ \f(1, r ) \f((f,(q)    +   EQ \f((f,(z)  z
or
(  =  r  EQ \f( (  ,(r)    +   EQ \f(1, r ) \f( (  ,(q)    +  z   EQ \f( (  ,(z)  
[Exercise]  What is (f in spherical coordinates?
(  =  r  EQ \f( (  ,(r)    +   EQ \f(1, r ) \f( (  ,(q)    +     EQ \f( 1 , r sinq ) 

 EQ \f( (  ,(f)  
(6)
Divergence (•v

v  = v1 1 + v2 2 + v3 3

(•v  =  (•(v1 1 + v2 2 + v3 3)  =  ?

(i)
(•v11  =  (•(h2h3v1  EQ \f(d1, h2h3 )  )



=  ((h2h3v1) • EQ \f(d1, h2h3 )   +  h2h3v1 (• EQ \f(d1, h2h3 )  
but
(• EQ \f(d1, h2h3 )    =  (•(  EQ \f(d2,h2)  (  EQ \f(d3,h3)  )


=  (•( (q2 ( (q3 )  =  0
(Recall that (•((1((2) = 0


(•v11  =   EQ \f(d1, h2h3 )  •((h2h3v1)



=   EQ \f(d1, h2h3 )  •(  EQ \f(d1,h1) \f(((h2h3v1) ,(q1)  + 2 . . .  )


=   EQ \f(1, h1h2h3 ) \f(((h2h3v1) ,(q1)       (since d1•d2 = 0, etc.) 

(•v  =    EQ \f(d1, h2h3 )  •((h2h3v1)  +   EQ \f(d2, h3h1 )  •((h3h1v2)  



+   EQ \f(d3, h1h2 )  •((h1h2v3)


=   EQ \f(1, h1h2h3 ) ( \f((  ,(q1) (h2h3v1) + \f((  ,(q2) (h3h1v2) + \f((  ,(q3) (h1h2v3)   ) 


[Example]  Cylindrical coor.  (•v =   EQ \f(1,r) \f(( ,(r) (rvr)  +  EQ \f(1,r) \f((vq,(q)   +   EQ \f((vz,(z) 
(7)
Laplacian  (2  =  (•(
(2  =   EQ \f(1, h1h2h3 )  ( \f(( ,(q1) ( \f( h2h3 ,h1) \f(( ,(q1)  ) + \f(( ,(q2) ( \f( h3h1 ,h2) \f(( ,(q2) ) + \f(( ,(q3) ( \f( h1h2 ,h3) \f(( ,(q3)  )  )


(8)
Curl   ((v

((v  =  (( (v11) + (( (v22) + (( (v33)

But
(( (v11)  =  (( (h1v1 EQ \f(d1, h1 )  )


=  (h1v1) (((  EQ \f(d1, h1 )  ) + ((h1v1) (  EQ \f(d1, h1 ) 
However,


( (  EQ \f(d1, h1 )   =  (( ((q1)  

( since (q1  =   EQ \f(d1, h1 )  )



=  0



( since (( (()  =  0 )

thus we have


(( (v11)  =  ((h1v1) (  EQ \f(d1, h1 )   =  -  EQ \f(d1, h1 )  ( (h1v1


=  -  EQ \f(d3, h1h2 ) \f(( ,(q2) (h1v1)   +   EQ \f(d2, h3h1 ) \f(( ,(q3) (h1v1) 


=   EQ \f(1, h1h2h3 ) ( h2d2 \f(( ,(q3)  -  h3d3 \f(( ,(q2)  ) (h1v1) 

((v  =   EQ \f(1, h1h2h3 ) \b\bc\|(\a\co3\hs8\vs8( h1d1, h2d2, h3d3, \f(( ,(q1), \f(( ,(q2), \f(( ,(q3), h1v1, h2v2, h3v3) ) 
[Example]  For cylindrical coordinates


((v  =   EQ \f(1, r ) \b\bc\|(\a\co3\hs12\vs8( dr, rdq, dz, \f(( ,(r), \f(( ,(q), \f(( ,(z), vr, rvq, vz) ) 
Line and Surface Integrals

1
Line Integrals
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Force:  
F
Displacement:  
d
Work:   
W  =  F•d
Work (from r to r+dr)
dW  =  F•dr
Work along a curve C
 EQ \i(C, , dW)   =   EQ \i(C, , F•dr)    is a line integral

If the path of integration C is a closed curve, we write


O EQ \d\ba9()\i(C, , F•dr )  
for closed curve only
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Methods of Evaluation of Line Integral
The line integration along a curve C can be evaluated in the following methods:

Method I:  Parameter Representation (of the curve)

The parametric representation of a curve r(t) is


r(t)  =  x(t) i + y(t) j + z(t) k
then
 EQ \i(C, , F•dr)   =   EQ \i(a,b, F•(\f(  dr(t)  , dt )) dt) 
[Example]
Curve: 

y = x2

Force Field

F = 2 x y i + ( x2 + y2 ) j
Find the work done in moving from the point (1, 1) to the point (3, 9)
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[Solution]
The curve C can be represented by


r(t)  =  t i + t2 j         1    t   3

The work can be calculated by


W  =   EQ \i(C, , F•dr)   =   EQ \i(1,3, F•(\f(  dr(t)  , dt )) dt) 
But
F(t)  =  2 x y i + ( x2 + y2 ) j  =  2 t3 i + ( t2 + t4 ) j
and
 EQ \f(dr, dt )   =  i + 2 t j

F• EQ \f(dr, dt )   =  2 t3 + 2 t ( t2 + t4 )  =  4 t3 + 2 t5

W  =   EQ \i(1,3, (4 t3 + 2 t5 ) dt)   =  322  EQ \f(2,  3  ) 
[Exercise] 
F(x, y)  =   EQ \f(a x, ( x2 + y2 )3/2 )  i  +   EQ \f(a y, ( x2 + y2 )3/2 )  j
Calculate the work done for a particle which moves on the straight line from (1, 0) to (3, -2)

[Hint]:  r(t)  =  t i + ( 1 - t ) j  ,  1  t  3       Ans:  W =  ( 1 -  EQ \f(1,\r(13))   )
Method II  

If
F  =  Fx i + Fy j + Fz k
and
r  =  x i + y j + z k
then
 EQ \i(C, , F•dr)   =   EQ \i(C, , )( Fx dx + Fy dy + Fz dz ) 
[Example]
F  =  y z i + x y j + x z k
Calculate the line integral of F from (0, 0, 0) to (1, 1, 1) along the path C consisting of the curve x = y2, z = 0 in the xy plane from (0, 0, 0) to (1, 1, 0) and the line x = 1, y = 1 perpendicular to the xy plane from (1, 1, 0) to (1, 1, 1).

[Solution]


 EQ \i(C, , F•dr)   =   EQ \i(C1, , F•dr)   +   EQ \i(C2, , F•dr) 
On C1:
z = 0,   x = y2

dz = 0  and  dx = 2 y dy

(
 EQ \i(C1, , F•dr)   =   EQ \i(C1, , (Fx dx + Fy dy + Fz dz)) 


=   EQ \i(C1, , (yz dx + xy dy + xz dz)) 


=   EQ \i(C1, , x y dy)     (since z = 0 and dz = 0 on C1) 


=   EQ \i(C1, , y2 y dy)  (since x = y2 on c1) 


=   EQ \i(0,1, y3 dy )   =   EQ \f(1, 4 ) 
On C2:  
x = 1,   y = 1,   z = z



dx  =  0,   dy  =  0


 EQ \i(C2, , F•dr)   =   EQ \i(0,1, z dz)   =   EQ \f(1, 2 ) 

 EQ \i(C, , F•dr ) =    EQ \i(C1, , F•dr)   +   EQ \i(C2, , F•dr)   =   EQ \f(3, 4 ) 
Note that if we integrate along the path C' consisting of the straight line x = y = z, directly from (0, 0, 0) to (1, 1, 1), then on C'


dx = dy = dz  and  x = z,  y = z


 EQ \i(C', , F•dr)   =   EQ \i(0,1, 3 z2 dz ) = 1

which indicates that the above line integral depends on the path of integration.

Line Integrals Independent of Path
Question:  Under what condition(s) that  EQ \i(C, , F•dr)   (  f(path)?

Note that
 EQ \i(C, , F•dr)   =   EQ \i(C, , Fx dx + Fy dy + Fz dz) 
If we can find a function such that


df  =  Fx dx + Fy dy + Fz dz
(Exact Differential)

then
 EQ \i(C, , F•dr)  =  EQ \i(C, , df)   =  f(P1) - f(Po)    

which is independent of path if f() is a single-values function.  Here P1 and Po are the end points of C.

Since
df  =   EQ \f((f, (x )  dx  +   EQ \f((f, (y )   dy  +   EQ \f((f, (z )  dz

we need
Fx  =   EQ \f((f, (x )   ;  Fy  =   EQ \f((f, (y )   ;   Fz  =   EQ \f((f, (z ) 
Note that
   EQ \f((Fx, (y )   =   EQ \f((2f, (y(x )   =   EQ \f((2f, (x(y )   =   EQ \f((Fy, (x ) 
or

  EQ \x( \f((Fx, (y )  =  \f((Fy, (x ) )  (Recall the condition for exact differential) 
Similarly, we need



 EQ \x( \f((Fx, (z )  =  \f((Fz, (x )  ;     \f((Fy, (z )  =  \f((Fz, (y ) ) 
Next we notice that


( ( F  =  i  EQ \b\bc\[( \f((Fz,(y) - \f((Fy,(z) )   +  j  EQ \b\bc\[( \f((Fx,(z) - \f((Fz,(x) )   +  k  EQ \b\bc\[( \f((Fy,(x) - \f((Fx, (y ) ) 
thus, if F satisfies the above exactness conditions, then


 EQ \x( ( ´ F  =  0 ) 
Theorem  (Criterion for Exactness and Independence of Path)



 EQ \i(C, , F•dr)   =   EQ \i(C, , (Fx dx + Fy dy + Fz dz)) 

is independent of path in a domain D if


(i)
Fx, Fy, Fz and their first derivatives are continuous in D.


(ii)
they are exact, i.e., 



 EQ \f((Fx, (y )   =   EQ \f((Fy, (x )   ;     EQ \f((Fx, (z )   =   EQ \f((Fz, (x )   ;      EQ \f((Fy, (z )   =   EQ \f((Fz, (y ) 


or  ( ( F  =  0

(iii)
D is simply connected.

Simply Connected Region
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Potential Function

If we have ( ( F = 0, then, as shown in the above section, we can find a function f such that



df  =  F•dr
But since
df  =  (f•dr
thus,

df - df  =  ( F - (f )•dr  =  0

i.e., F - (f  dr,  or  F - (f = 0.  But since the direction of dr is arbitrary, we have



F  =  (f

That is, if ( ( F = 0 in a region, then F is the gradient of a scalar function f in that region.  The function f defined in the above equation is known as potential of F.  In this case, F and the vector field defined by F are called conservative since 



O EQ \d\ba9()\i(C, , F•dr)   =  0

[Example]  F =  y2 i + 2 ( x y + z ) j + 2 y k

(i) 
Is F conservative?


(ii)
What is the potential of F
[Solution]

(i)
Since ( ( F  =  0  everywhere
(
F is conservative.

(ii)
df  =  F•dr        We need to find f such that 

F  =  (f

Since  df  =  F•dr  =  y2 dx + 2 ( x y + z ) dy + 2 y dz



=   EQ \f((f, (x )  dx  +   EQ \f((f, (y )  dy  +   EQ \f((f, (z )   dz


 EQ \f((f, (x )   =  y2

(
f  =  x y2 + g(y, z)

Again,   EQ \f((f, (y )   =  2 ( x y + z )

or
2 x y +  EQ \f( (g(y,z) ,(y)   =  2 ( x y + z )

(
 EQ \f( (g(y,z) ,(y)   =  2 z

(
g(y, z )  =  2 y z + h(z)

or
f  =  x y2 + 2 y z + h(z)

Now since


 EQ \f((f, (z )   =  2 y

(
2 y +  EQ \f( dh ,dz)   =  2y

(
h(z)  =  C  , an arbitrary constant


f  =  x y2 + 2 y z + C

[Example]
F  =  -  EQ \f(y, x2 + y2 )  i  +   EQ \f(x, x2 + y2 )  j

F•dr  =   EQ \f( xdy - ydx ,x2 + y2)   =  d tan-1  EQ \f(y, x )   =  d
Thus, we have


F  =  (
and
( ( F  =  0
But is F conservative?

Note that |F|  =   EQ \f(1, \r( x2 + y2) )   and |F| ((  as (x, y) ( (0, 0)

i.e., F is not continuous at (0, 0) and ((F is not defined at (0, 0).

Note that the integration


O EQ \d\ba9()\i(C, , F•dr)   =  O EQ \d\ba9()\i(C, , dq)   =  2   ( 0

if the region enclosed by curve C includes (0, 0).

[Exercise]
Show that  EQ \i(C, , )( y + y z )  dx + ( x + 3 z3 + x z ) dy + ( 9 y z2 + x y - 1 ) dz is independent of any path C between (1, 1, 1) and (2, 1, 4).  Please evaluate.

[Solution]

Since
 EQ \i(C, , F•dr)   =   EQ \i(C, , (Fx dx + Fy dy + Fz dz)) 
where 
Fx  =  y + y z
Fy  =  x + 3 z3 + x z

and

Fz  =  9 y z2 + x y - 1

It can be easily shown that


 EQ \f((Fx, (y )   =  1 + z  =   EQ \f((Fy, (x ) 
;
 EQ \f((Fy, (z )   =  9 z2 + x  =   EQ \f((Fz, (y ) 
and
 EQ \f((Fx, (z )   =  y =   EQ \f((Fz, (x ) 
In addition, the derivatives of Fx, Fy and Fz are continuous in space, we then conclude that the integral is independent of path.  In order to evaluate the integral of the path from (1, 1, 1) to (2, 1, 4), we can find the potential of F first:

Since



df  =  F•dr  =  ( y + y z ) dx + ( x + 3 z3 + x z ) dy + ( 9 y z2 + x y - 1 ) dz



=   EQ \f((f, (x )  dx  +   EQ \f((f, (y )  dy  +   EQ \f((f, (z )   dz

(
f  =  x y + x y z + 3 y z3 - z + C


where C is an arbitrary constant.  Thus


 EQ \i(C, , F•dr)   =   EQ \i(C, , ) df  =  x y + x y z + 3 y z3 - z + C  EQ \b\lc\|(\a((2,1,4), ,(1,1,1))) 



=  198 - 4  =  194

2
Surface Integrals - (Over a Plane)
Review of Double Integrals

(1)
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dA  =   EQ \i(c,d, )\d\ba4()\i(  a,  b, ) f(x, y) dx dy

[image: image28]
(2)
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dA  =   EQ \i(a,b, )\b\bc\{( \i(g(x),h(x), )f(x, y) dy )  dx

or
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dA  =   EQ \i(c,d, )\b\bc\{( \i(p(y),q(y), )f(x, y) dx )  dy

[image: image29.png]O
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[Question]
How to evaluate  EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dA?  if R is given in the following? 


[image: image30.wmf] 


 [Example]      Find  EQ \i(,, )\d\ba6()\i(R,, )(x2 + y2)  dA  for 



R  =  { (x, y):  0  x  1 and x2  y   EQ \r(x)   }

[Solution]

The region R of the integration is illustrated in the following figure:
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 EQ \i(,, )\d\ba6()\i(R,, )(x2 + y2)  dA  =   EQ \i(0,1, )\i(x2,\r(x), )(x2 + y2 )  dy dx  =   EQ \f(18, 105 ) 
or
 EQ \i(,, )\d\ba6()\i(R,, )(x2 + y2)  dA  =   EQ \i(0,1, )\i(y2,\r(y), )(x2 + y2)  dx dy

Change of Variables in Double Integrals

( Recall that the proof of convolution theorem in Laplace Transform )

(i)
Reversing the Order of Integration

[Example]    EQ \i(1,2, )\i(1,x2, )(x/y)  dy dx
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 EQ \i(1,4, )\i(\r(y),2, )(x/y)  dx dy

[Exercise]
Show that   EQ \i(0,2, )\i(y,2, )  e EQ \s\up8(x2)  dx dy  =   EQ \i(0,2, )\i(0,x, ) e EQ \s\up8(x2)  dy dx

(ii)
Change of Variables (Change of Coordinates)

First let us consider a 1-D integration:


 EQ \i(a,b, f(x) dx) 
if
x = x(u),   then
(
dx  =   EQ \f(dx, du )   du

thus
 EQ \i(a,b, f(x) dx) 

(
 EQ \i(a,b, f(x(u)) \f(dx, du ) du ) 
where  and  are given in x() = a  and  x() = b.

Now for a surface integral,


 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy

if
x  =  x(u, v);     y  =  y(u, v)

What is  EQ \i(,, )\d\ba6()\i(?,, ) ?? du dv  ??

Since  dA = dx dy,  we need to find dA = ?? du dv

where u and v can be considered as new coordinates.


dA  =  | eu du ( ev dv |

and
eu  =   EQ \f((r, (u )   =   EQ \f((x, (u )  i  +   EQ \f((y, (u )  j   

(2-D)


ev  =   EQ \f((r, (v )   =   EQ \f((x, (v )  i  +   EQ \f((y, (v )  j
Thus,


eu ( ev  =   EQ \b\bc\{( \f((x,(u) \f((y,(v) - \f((x,(v) \f((y,(u) )  k
(
dA = | eu du ( ev dv | =  EQ \b\bc\|( \b\bc\{( \f((x,(u) \f((y,(v) - \f((x,(v) \f((y,(u) ) )  du dv



=   EQ \b\bc\|(\f(((x,y), ((u,v) ))  du dv

where
 EQ \b\bc\|(\f(((x,y), ((u,v) ))   =  | Jacobian |  =   EQ \b\bc\║(\a\co2\hs8\vs8( (x/(u, (x/(v, (y/(u, (y/(v) ) 
(
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy  =   EQ \i(,, )\d\ba6()\i(R*,, ) f(u, v)  EQ \b\bc\|(\f(((x,y), ((u,v) ))  du dv

[Example]


 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy  =    EQ \i(,, )\d\ba6()\i(R*,, ) ?? dr d
Since
x  =  r cos,   y  =  r sin

J  =   EQ \f(((x, y), ((r, q) )   =   EQ \b\bc\|(\a\co2\hs8\vs8( cosq, -rsinq, sinq,  rcosq) )   =  r

(
 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy  =    EQ \i(,, )\d\ba6()\i(R*,, ) f(r, ) r dr d
Green's Theorem in the xy-Plane  (  EQ \i(,, )\d\ba6()\i(R,, ) dA  (  EQ \i(C, , ) dS )

[image: image33.png]



R:  region,    C:  boundary,  counterclockwise

Simple Curve:  A curve C is called simple if it does not cross itself.
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Simply Connected Region:  If C is a simple closed curve contained in R, then every point in the region enclosed by C is also in R (i.e., no holes in R)
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Green's Theorem:

If R is a plane region bounded by a finite number of simple closed curves, and if F1(x, y), F2(x, y), (F1/(y and (F2/(x are continuous at all points of R and its boundary C, then


 EQ \x( \i(,, )\d\ba6()\i(R,, )\b\bc\[( \f( (F2 ,(x) - \f( (F1 ,(y) ) dx dy  =  O\d\ba9()\i(C, , )F1 dx + F2 dy ) 
[Partial Proof]

Let us consider the integral   EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( - \f((F1,  (y  ) )  dA  first.  
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 EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( - \f((F1,  (y  ) )  dA  =  -  EQ \i(a,b, )\i(g1(x),g2(x), ) \f( (F1 ,  (y  )  dy dx


=  -   EQ \i(a,b, ) [ F1( x , g2(x) - F1( x , g1(x) ] dx


=    EQ \i(a,b, ) [ F1( x , g1(x) - F1( x , g2(x) ] dx


=   EQ \i(a,b, ) F1( x , g1(x) ) dx  +   EQ \i(b,a, ) F1( x , g2(x) ) dx


=  O EQ \d\ba9()\i(C, , F1(x,y) dx)   
Similarly, by considering the following figure,

[image: image37.png]



we have


 EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,  (x  ) )  dA  =    O EQ \d\ba9()\i(C, , F2(x,y) dy)   
Thus, we have


 EQ  \i(,, )\d\ba6()\i(R,, )\b\bc\[( \f( (F2 ,(x) - \f( (F1 ,(y) ) dx dy  =  O\d\ba9()\i(C, , )F1 dx + F2 dy  
Please read the Textbook ( p. 486-488 ) for region R with holes!

Vector Form of Green's Theorem:
(i)
If we have   


F  =  Fx i + Fy j
then
 EQ \f( (Fy , (x )   -   EQ \f( (Fx , (y )   =  (((F)•k
since
Fx dx + Fy dy  =  F•dr
(
 EQ \x(  \i(,, )\d\ba6()\i(R,, )((´F)•k dx dy  =  O\d\ba9()\i(C, , )F•dr ) 
(ii)
Let n be the unit normal vector of Curve C and r be the position vector of a point on Curve C:
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r  =  x i + y j
and
u (unit tangent vector)  =   EQ \f(dr, ds )   =   EQ \f(dx, ds )  i +  EQ \f(dy, ds )  j

n (unit normal vector)  =   EQ \f( dy ,ds)  i -   EQ \f(dx, ds )  j
If we let


F  =  F2 i - F1 j
then
F•n  =  F2  EQ \f(dy, ds )   +  F1  EQ \f(dx, ds )   
or
F1 dx + F2 dy  =  (F•n) ds

but
(•F  =   EQ \f((F2, (x )   -   EQ \f((F1, (y ) 
thus, the equation  EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,(x) - \f((F1,(y) )  dx dy  =  O EQ \d\ba9()\i(C, , ) F1 dx + F2 dy

becomes


 EQ \x( \i(,, )\d\ba8()\i(R,, )(•F dx dy  =  O\d\ba9()\i(C, , )F•n ds ) 
( Recall the Equation of Continuity )

(iii)
Let  F1  =  -  EQ \F((w, (y )    ,
F2  =   EQ \f((w, (x ) 
then
 EQ \f((F2, (x )   -   EQ \f((F1, (y )   =   EQ \f((2w, (x2 )   +   EQ \f((2w, (y2 )   =  (2
thus
O EQ \d\ba9()\i(C, , )( F1 dx + F2 dy )   =  O EQ \d\ba9()\i(C, , )\b\bc\[( F1 \f(dx, ds ) + F2 \f(dy, ds ) )  ds



=  O EQ \d\ba9()\i(C, , )\b\bc\{( - \f((w, (y ) \f(dx, ds ) + \f((w, (x ) \f(dy, ds ) )  ds

But
(  =   EQ \f((w, (x )  i  +   EQ \f((w, (y )  j ;  
n  =   EQ \f(dy, ds )  i -  EQ \f(dx, ds )  j
(
-  EQ \f((w, (y ) \f(dx, ds )  +  EQ \f((w, (x ) \f(dy, ds )   =  (•n  (   EQ \f((w, (n ) 
where (/(n  =  direction derivative of  onto n.


 EQ \x( \i(,, )\d\ba8()\i(R,, )(2w dx dy  =  O\d\ba9()\i(C, , )\f((w, (n ) ds ) 
Applications of Green's Theorem ( over a Plane )

[Example]

Evaluate the line integral over a closed curve C


O EQ \d\ba9()\i(C, , )( x2 - y2 ) dx + ( 2 y - x ) dy

where C consists of the boundary of the region in the first quadrant that is bounded by the curves of y = x2 and y = x3.

[Solution]
The Green's theorem states that


 EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,(x) - \f((F1,(y) )  dA  =  O EQ \d\ba9()\i(C, , )F1 dx + F2 dy
where F1 =  x2 - y2,  F2  =  2 y - x , and  (F2/(x  =   1 , (F1/(y  =   2 y ; thus,


O EQ \d\ba9()\i(C, , )F1 dx + F2 dy  =   EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,(x) - \f((F1,(y) )  dA  =   EQ \i(,, )\d\ba8()\i(R,, )( - 1 + 2 y )  dA



=   EQ \i(0,1, ) 

 EQ \i(x3,x2, ) (  1 + 2 y ) dy dx  =     EQ \f( 11 ,  420  ) 
[Example]

Evaluate  O EQ \d\ba9()\i(C, , )( x3 + 3 y ) dx + ( 2 x - ey3 ) dy , where C is the circle ( x - 1 )2 + ( y - 5 )2  =  4.

[Solution] 
Here F1  =  x3 + 3 y , F2 = 2 x - ey3, and (F2/(x  =   , (F1/(y  =  3; thus,


O EQ \d\ba9()\i(C, , )F1 dx + F2 dy  =   EQ \i(,, )\d\ba8()\i(R,, )\b\bc\[( \f((F2,(x) - \f((F1,(y) )  dA  =   EQ \i(,, )\d\ba8()\i(R,, ) - 1  dA  =  - A

Since the area of the region R bounded by the circle of radius 2 is 4 , we have


O EQ \d\ba9()\i(C, , )( x3 + 3 y ) dx + ( 2 x - ey3 ) dy  =  - A  =  - 4 

[Example]   Area enclosed by R can be calculated by  EQ \i(,, )\d\ba8()\i(R,, ) dA

But by Green's theorem,


 EQ \i(,, )\d\ba8()\i(R,, ) dA  =  O EQ \d\ba9()\i(C, , ) x dy  =  O EQ \d\ba9()\i(C, , ) - y dx  =   EQ \f(1, 2 )  O EQ \d\ba9()\i(C, , )(- y dx + x dy) 
For example, the area enclosed by the ellipse


(x2/a2) + (y2/b2)  =  1

can be calculated by letting


r(t)  =  a cos t i  + b sin t j,
0  t  2 
(
A  =   O EQ \d\ba9()\i(C, , ) x dy  =   EQ \i(0,2p, ) a cos t d( b sin t )  =   a b
(Please read p. 488 of the textbook.)
3
Surface Integrals - ( in Space )

Representations of Surfaces (Parametric)

[image: image39.png]Parametric representations of a curve and a surface

Curve C
In space

Surface S
r(u,v) in space

u
3>

(uv-plane)




Curve in a Plane
Surface in Space


y =  f(x)
z  =  f(x, y)


g(x, y)  =  0  (e.g., x2 + y2 = 1)
g(x, y, z) = 0  (e.g., x2 + y2 + z2 = 1)


r  =  r(t),  t: parameter
r = r(u, v),  u, v: parameters
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[Example]      The surface of a circular cylinder  x2 + y2  =  R2,   -1  z  1 ; (Upper Left Figure)
The parametric representation of the above surface is


r(u, v)  =  R cos u i + R sin u j + v k,



0  u  2,   -1  v  1

[Example]
Sphere of radius R:  x2 + y2 + z2  =  R2   (Upper Right Figure)


r(u, v)  =  R cos v cos u i + R cos v sin u j + R sin v k


0  u  2,   -/2  v  /2

Is the representation unique?  No! For example, the sphere can also be represented by


r(u, v)  =  R cos u sin v i + R sin u sin v j + R cos v k



0  u  2,   0  v  
Tangent Plane and Surface Normal
[image: image41.png]Tangent plane and normal vector




Tangent Plane  T(P):  A plane contains the tangents of all curves on S passing through P.

Curve C:

r(t)

Surface S:

r(u, v)

A curve on S:
u = u(t),  v = v(t)  and   EQ \o(r,\s\up1(˜))(t) =  r(u(t), v(t))

[Example] 
Surface:  r(u, v)  =  a cos u i + a sin u j + v k
A helix on the surface:  u = t,    v = c t  can be represented by

 EQ \o(r,\s\up1(˜))(t)  =  a cos t i + a sin t j + c t k  #
Curve r(t)
(
tangent vector:  r'(t)

Curve on Surface  EQ \o(r,\s\up1(˜))(t)
(
tangent vector:   EQ \o(r,\s\up1(˜))'(t)


or
 EQ \o(r,\s\up1(˜))'(t)  =  r,\s\up1(˜)) EQ \f(d, dt )
  =   EQ \f((r, (u ) \f(du, dt )   +   EQ \f((r, (v ) \f(dv, dt ) 



=  ru u' + rv v'

Normal Vector, N
(
N  =  ru ( rv


( recall that N  ru and N  rv )

Unit Normal Vector, n
(
n  =   EQ \f(N, | N | )   =   EQ \f(ru ´ rv, | ru ´ rv | ) 
In addition, if the surface S is represented by


g(x, y, z)  =  0

the unit normal vector can be calculated by ( recall the physical meaning of (g )


n=  EQ \f((g, | (g | ) 
[Example]
Find the equations of the tangent plane and normal line to the ellipsoid x2 + (y2/4) + (z2/9) =  3 at the point (1, 2, 3).

[Sol'n]



g(x, y, z)  =  x2 + (y2/4) + (z2/9) - 3  =  0


(g = 2 x i +  EQ \f(y, 2 )  j +  EQ \f(2z, 9 )  k

(g(1, 2, 3)  =  2 i + j +  EQ \f(2, 3 )  k
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(i)
Tangent Plane
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PQ  =  ( x - xo ) i + ( y - yo ) j + ( z - zo ) k
Since  PQ (g, where


(g  =  a i  +  b j  +  c k
i.e., we have


a ( x - xo ) + b ( y - yo ) + c ( z - zo )  =  0

or
a x + b y + c z  =  a xo + b yo + c zo
where a, b and c are the components of (g.

Now that  in our case (g  =  2 i + j +  EQ \f(2, 3 )  k  at (1, 2, 3)

 
the tangent plane is


2 ( x - 1 ) + ( y - 2 ) +  EQ \f(2, 3 ) ( z - 3 )   =  0

or
2 x + y +  EQ \f(2, 3 )  z  =  6

(ii)
Normal Line

[image: image44.png]t
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(x - xo) i + (y - yo) j + (z - zo) k  =  t (g





(since same direction of (g)

Here, t is a parameter.


(x - 1) i + (y - 2) j + (z - 3) k  =  t ( 2 i + j +  EQ \f(2, 3 )  k)

or
r(position vector of a line)  =  x i + y j + z k


=  ( 2 t +1 ) i + ( t + 2 ) j + (  EQ \f( 2 t , 3 )  + 3 ) k



(Parametric representation)

since x = 2 t + 1,   y = t + 2,   z = EQ \f(  2 t  , 3 )  + 3

(
t =  EQ \x( \f(x - 1, 2 )  =  \f(y - 2, 1 )  =  \f(  z  -  3  , \f( 2 ,  3  ) ) ) 



(symmetric equation of a line)

(iii)
Question:  What is the unit normal vector at point (1, 2, 3)?

Methods of Calculation of Surface Integrals
Method I - by parametric integration
Surface (piecewise smooth):  r(u,v)  =  x(u,v) i + y(u,v) j + z(u,v) k
Unit normal vector:
n  =   EQ \f(N, | N | )    where N =   ru ( rv
then the surface integral (flux integral) is defined as


 EQ \x( \i(,, )\d\ba8()\i(S,, )F•n dA  =  \i(,, )\d\ba8()\i(R,, )F(r(u,v)) •N(u,v) du dv ) 


(Recall that dA = | ru ( rv | du dv  =  | N | du dv)

For example,   EQ \i(,, )\d\ba8()\i(S,, ) v•n dA  =  mass flux across S

If 
F = F1 i + F2 j + F3 k

n  =  cos  i + cos  j + cos  k
where , ,  are the angles between n and x-, y- and z-axis, respectively.


N  =  N1 i + N2 j + N3 k
then
 EQ \x\bo\to\le( \i(,, )\d\ba8()\i(S,, )F•n dA )   =   EQ \i(,, )\d\ba8()\i(S,, )( F1 cosa + F2 cosb + f3 cosg )  dA



 EQ \x\bo\to\ri( =  \i(,, )\d\ba8()\i(R,, )( F1 N1 + F2 N2 + F3 N3 ) du dv ) 
Please read the Textbook for the orientation of a surface ( p. 499 ) !!

In addition, if the surface integral  EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  is written as ( p. 501 ) :


 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA

over the surface S, since the element of the area of the surface can be represented by


dA = | ru ( rv | du dv  =  | N | du dv

we then have


 EQ \x( \i(,, )\d\ba8()\i(S,, )G(x, y, z) dA  =  \i(,, )\d\ba8()\i(S,, )G(u, v) | N | du dv ) 
For example, the area of the surface A can be calculated by


A  =   EQ \i(,, )\d\ba8()\i(S,, ) dA  =   EQ \i(,, )\d\ba8()\i(S,, ) | N | du dv  =   EQ \i(,, )\d\ba8()\i(S,, ) | ru ( rv | du dv

[Example]
Calculate 
 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA

where  S:
y = x2, 0  x  2, 0  z  3 
( parabolic cylinder )

            F:
F  =  y i + 2 j + x z k


[image: image45.wmf]0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

[image: image46.png]



[Solution]
The parametric representation of the surface can be written as


r  =  u i + u2 j + v k
( 0  u  2,   0  v  3 )

and
ru  =  i + 2 u j

rv  =  k

N  =  ru ( rv  =  2 u i - j
also
F  =  y i + 2 j + x z k  =  u2 i + 2 j + u v k

F•N  =  2 u3 - 2


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(R,, )  F•N du dv




=   EQ \i(0,3, )\i(0,2, )( 2 u3 - 2 )  du dv  =  12

Method II - 

It has been shown that the unit normal vector of the surface n can be expressed as


n  =  cos  i + cos  j + cos  k
where , ,  are the angles between n and x-, y- and z-axis, respectively.  Thus,


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(S,, )( F1 cosa + F2 cosb + F3 cosg )  dA

However, cos dA is the projection of dA  (of surface S) onto yz-plane.  In other words,


 EQ \i(,, )\d\ba8()\i(S,, ) F1(x, y, z) cos dA  =    EQ \i(,, )\d\ba8()\i(S1,, ) F1(y, z) dy dz

where S1 is the projection of S onto the yz-plane (beware of the orientation of the surface).  Note that the variable x in F1 shall be replaced in terms of y and z ( i.e., the surface is represented by x = x( y, z ). )  Similarly,


 EQ \i(,, )\d\ba8()\i(S,, ) F2 cos dA  =    EQ \i(,, )\d\ba8()\i(S2,, ) F2 dz dx


 EQ \i(,, )\d\ba8()\i(S,, ) F3 cos dA  =    EQ \i(,, )\d\ba8()\i(S3,, ) F3 dx dy

where S2 and S3 are the projections of S onto zx- and xy-planes, respectively.  Thus, the surface integral can be calculated by the following method (again, beware of the orientation of the surface):


 EQ \x( \i(,, )\d\ba8()\i(S,, )F•n dA =  ± \i(,, )\d\ba8()\i(S1,, )F1 dy dz ± \i(,, )\d\ba8()\i(S2,, )F2 dz dx ± \i(,, )\d\ba8()\i(S3,, )F3 dx dy ) 
[Example]
Calculate 
 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA

where  S:
y = x2, 0  x  2, 0  z  3 (parabolic cylinder)
(see Fig 225, p. 498 of the Textbook)


and      F:
F  =  y i + 2 j + x z k
[Solution]

It is obvious from the Fig. 225 that the projections of S are:


S1 (yz-plane)
:
0  y  4  ;
0  z  3


S2 (zx-plane)
:
0  x  2  ;
0  z  3


S3 (xy-plane)
:
Zero projection area


 EQ \i(,, )\d\ba8()\i(S,, ) ÞEQÞ\i(,, )\d\ba8()\i(S,, )ÞF•n dA  =   (  EQ \i(,, )\d\ba8()\i(S1,, ) F1 dy dz    (   EQ \i(,, )\d\ba8()\i(S2,, ) F2 dz dx    (   EQ \i(,, )\d\ba8()\i(S3,, ) F3 dx dy



=   EQ \i(0,3, )\i(0,4, ) y dy dz     EQ \i(0,2, )\i(0,3, ) 2 dz dx  +  0  






(Note the "  " sign in dz dx integration!!)



=  12

Method III - Projection of the Surface  ( p. 501 )

[image: image47.png]



It has been shown that the surface integral of a scalar function G(x, y, z) can be calculated by


 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  =   EQ \i(,, )\d\ba8()\i(S,, ) G(u, v) | N | du dv

If the surface is represented by 


z  =  f( x, y )

and that we set the parameter u and v as u = x, v = y.  The position vector of a point on the surface can be represented as


r  =  u i + v j + f( u, v ) k
the normal vector on the surface is then

N  =  ru ( rv  =  ( i + fu k ) ( ( j + fv k ) 




=  - fu i - fv j + k
or
| N |  =   EQ \r( 1 + fu2 + fv2 ) 
where  fu  =  fx  =   EQ \f((f, (x )   ,
fv  =  fy  =   EQ \f((f, (y )  .

Thus, the surface integral  EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  can then be calculated by


 EQ \x( \i(,, )\d\ba8()\i(S,, )G(x,y,z) dA  =  \i(,, )\d\ba8()\i(R,, )G(x,y,f(x, y)) \r( 1 + fx2 + fy2 ) dx dy ) 
where R is the projection area of S onto the xy-plane.

[Example]  Evaluate   EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA over a paraboloid surface

where
G  =  tan-1 (y/x)



S :    z = x2 + y2,  1  z  4,  0  x,  0  y
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[Solution]


fu  =  fx  =  2 x
;
fv  =  fy  =  2 y

thus


 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  =     EQ \i(,, )\d\ba8()\i(R,, ) tan-1(y/x)   EQ \r( 1 + 4x2 + 4y2 )  dx dy

Now change to the polar coordinate system, i.e.,


x  =  r cos,
y  =  r sin
thus,


tan-1(y/x)  =  tan-1( sin/cos)  =  tan-1 (tan)  =  

dx dy  =  r dr d
and
 EQ \r( 1 + 4x2 + 4y2 )   =   EQ \r( 1 + 4r2 ) 

 EQ \i(,, )\d\ba8()\i(R,, ) tan-1(y/x)   EQ \r( 1 + 4x2 + 4y2 )  dx dy  =   EQ \i(0,p/2, ) \i(1,2, )    EQ \r( 1 + 4r2 )   r dr d


=   EQ \i(0,p/2, ) \b\rc\|(\f(1, 12 ) ( 1 + 4r2 )\s\up10(3/2))\a(r=2, , ,r=1)   d



=   EQ \f(1, 12 ) ( 173/2 - 53/2 ) \f(1, 2 ) (\f(p, 2 ) )\s\up10(2) 


(  6.057

[Example]
Calculate the surface integral of the vector function



F  =  x i  +  y j
over the portion of the surface of the unit sphere  x2 + y2 + z2  =  1  above the xy-plane, z ( 0.

[Solution]

 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =  ??

Method I - parametric representation


x  =  cos v cos u

( R = 1 )


y  =  cos v sin u

0  u   2,  0  v  /2


z  =  sin v

(
r  =  cos v cos u i  +  cos v sin u j  +  sin v k
and
ru  =  - cos v sin u i  +  cos v cos u j

rv  =  - sin v cos u i  -  sin v sin u j  + cos v k

N  =  ru ( rv  



=  cos2v cos u i  +  cos2v sin u j  +  cos v sin v k

 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(S,, ) F•N du dv   =  

 EQ \i(,, )\d\ba8()\i(R,, )( cos v cos u i  +  cos v sin u j ) •



( cos2v cos u i  +  cos2v sin u j  +  cos v sin v k ) du dv



=   EQ \i(0,p/2, ) \i(0,2p, ) cos3v du dv



=   EQ \f(4, 3 )  
Method III - by the method of projection surface on xy-plane
 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  =   EQ \i(,, )\d\ba8()\i(R,, ) G(x, y, f(x, y))  EQ \r( 1 + fu2 + fv2 )  dx dy

where  G  =  F•n
Since the surface is represented by


g(x)  =  x2 + y2 + z2 - 1  =  0

we have


n  =   EQ \f((g, | (g | )   =  x i  +  y j  +  z k

F•n  =  ( x i + y j )•( x i + y j + z k )  =  x2 + y2
In addition, the hemisphere surface can be represented by


z  =  f(x,y)  =   EQ \r( 1 - x2 - y2 )    
( z ( 0 )

(
fx  =   EQ \f( - x , (1 - (x2 + y2))1/2 ) 
and
fy  =   EQ \f( - y , (1 - (x2 + y2))1/2 ) 

( 1 + fx2 + fy2 )  =   EQ \f( 1 , 1 - ( x2 + y2 ) ) 

 EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  



=   EQ \i(,, )\d\ba8()\i(R,, ) G(x, y, f(x, y))  EQ \r( 1 + fu2 + fv2 )  dx dy



=   EQ \i(,, )\d\ba8()\i(R,, )( x2 + y2 )  \r( \f( 1 , 1 - ( x2 + y2 ) ) )   dx dy



=   EQ \i(0,2p, )\i(0,1, ) \f(r2, \r( 1 - r2 ) )   r dr d  =   EQ \f( 4 p ,3) 
where R is the projection of the hemisphere onto the xy-plane.

Method II  -  


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =  (  EQ \i(,, )\d\ba8()\i(S*,, ) F1 dy dz   (   EQ \i(,, )\d\ba8()\i(S*,, ) F2 dz dx   (   EQ \i(,, )\d\ba8()\i(S*,, ) F3 dx dy

where
F1 =  x,  
F2  =  y,
F3  =  0


 EQ \i(,, )\d\ba8()\i(S1,, )  F1 dy dz  =   EQ \i(,, )\d\ba8()\i(S1,, )  x dy dz 

and
 EQ \i(,, )\d\ba8()\i(S2,, )  F2 dz dx  =   EQ \i(,, )\d\ba8()\i(S2,, )  y dz dx

Now that


 EQ \i(,, )\d\ba8()\i(S1,, )  x dy dz  =   EQ \i(,, )\d\ba8()\i( ,, )\r( 1 - (y2 + z2) )   dy dz



=  2  EQ \i(0,p, )\i(0,1, )\r( 1 - r2 )  r dr d
( Question:  Why "2" ?? )



=   EQ \f(  2 p  , 3 ) 
and
 EQ \i(,, )\d\ba8()\i(S2,, )  y dz dx  =   EQ \i(,, )\d\ba8()\i( ,, )\r( 1 - (x2 + z2 ) )  dz dx



=  2  EQ \i(0,p, )\i(0,1, )\r( 1 - r2 )  r dr d


=   EQ \f(  2 p  , 3 ) 

    EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \f(  4 p  , 3 ) 
[Exercise]
Find the integral of  EQ \i(,, )\d\ba8()\i(S,, ) G(x, y, z) dA  where


G  =  25 - x2 - y2

S  :  Hemisphere x2 + y2 + z2 = 16  with z ( 0.

[Answer]:  1441

[Exercise]  Evaluate  EQ \i(,, )\d\ba8()\i(S,, ) x z2 dA  where S is that portion of the cylinder y = 2 x2 + 1 in the first octant bounded by x = 0, x = 2, z = 4, and z = 8.
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[Hint]:  Since the surface is represented by y = y(x, z),  we can calculate the surface integral by projection of S onto the xz-plane.

Stokes's Theorem  (Surface Integral ( Line Integral)

Recall that the Green's theorem for a plane is given by


  EQ \i(,, )\d\ba8()\i(R,, )((´F) •k dx dy  =  O EQ \d\ba9()\i(C, , ) F•dr
where 

((F 
the curl of the vector function F

R 
the region in xy-plane

C 
the boundary (counterclockwise) of R
This theorem can be extended into 3-D space, i.e., ( the Stokes's Theorem )


 EQ \x( \i(,, )\d\ba8()\i(S,, )((´F)•n dA = O\d\ba9()\i(C, , )F•dr = O\d\ba9()\i(C, , )F•r'(s) ds ) 
where 

S 
a piecewise smooth oriented surface in space

C 
the boundary of S, a piecewise smooth simple curve

F 
the continuous vector function that has continuous first partial derivatives in S

n 
the unit normal vector of S

r'(s) 
=  dr/ds is the unit tangent vector of the curve C

s 
the arc length of the curve C
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[Example]  Read the Textbook, p. 517!
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[Example]  Evaluate O EQ \d\ba9()\i(C, , ) F•dr where F = ( z - 2 y ) i + ( 3 x - 4 y ) j + ( z + 3 y ) k, and C is the unit circle in the plane z = 2.

[Solution]

Method I ( by line integral )

C can be represented by


r(t) = cos t i + sin t j + 2 k  with  0 ( t ( 2 
and
dr  =  ( - sin t i + cos t j ) dt

On the unit circle, the vector function F becomes


F  =  ( z - 2 y ) i + ( 3 x - 4 y ) j + ( z + 3 y ) k 



=  ( 2 - 2 sin t ) i + ( 3 cos t - 4 sin t ) j + ( 2 + 3 sin t ) k
thus, 
F•dr  =  [ ( 2 - 2 sin t ) i + ( 3 cos t - 4 sin t ) j + ( 2 + 3 sin t ) k ] 




• [ ( - sin t i + cos t j ) dt ]



=  ( - 2 sin t + 2 sin2t + 3 cos2 t - 4 sin t cos t ) dt



=  ( 2 - 2 sin t + cos2t - 2 sin 2t ) dt

 (
 O EQ \d\ba9()\i(C, , ) F•dr  =   EQ \i(0,2p, ) ( 2 - 2 sin t + cos2t - 2 sin 2t ) dt  =  5 
Method II ( by surface integral )

We can also evaluate the integral via the Stoke's theorem:

 EQ \x( \i(,, )\d\ba8()\i(S,, )((´F)•n dA = O\d\ba9()\i(C, , )F•dr = O\d\ba9()\i(C, , )F•r'(s) ds ) 
where
n =  k

((F  =  3 i + j + 5 k
Thus,
   EQ \i(,, )\d\ba8()\i(S,, )((´F)•n dA  =   EQ \i(,, )\d\ba8()\i(S,, ) 5 dA   = 5 
4
Volume Integral (Triple Integral)
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The volume integral can be written as


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(x,y,z) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(x,y,z) dx dy dz

- RCC

or
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,z) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,z) r dr d dz

- Cylindrical Coor.

or
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,) r2 sin dr d d
- Spherical Coor.
[Example]
 
Evaluate the volume of the solid in the first octant bounded by the surfaces of z = 1 - y2, y = 2 x, and x = 3.


[image: image54.wmf]
[Solution]

The volume can be calculated by


V  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) dx dy dz

or
V  =   EQ \i(0,1, )\i(y/2,3, )\i(0,1-y2, )  dz dx dy



=   EQ \i(0,1, )\i(y/2,3, )(1 - y2)  dx dy



=   EQ \i(0,1, )\b\bc\[( x - x y2 )\b\lc\|(\a(3, ,y/2)) dy



=   EQ \i(0,1, )( 3 - 3y2 - y/2 + y3/2 )  dy



=   EQ \f(15, 8 ) 
5
Divergence Theorem of Gauss and Its Variations

Divergence Theorem of Gauss

Recall the vector form of Green's theorem:


 EQ \i(,, )\d\ba8()\i(R,, ) (•F dx dy  =  O EQ \d\ba9()\i(C, , ) F•n ds

which relates the surface integral and line (closed) integral.  The divergence theorem of Gauss states that


 EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(•F dV  =  O\d\ba10()\i(,, )\d\ba8()\i(S,, )F•n dA ) 
where


F  :
a differentiable continuous vector function


V  :
a closed bounded region ( domain )


S  :
piecewise smooth boundary surface of V


n  :
outward unit normal vector to S

Remarks:

If F  =  F1 i + F2 j + F3 k,  and n =  cos i + cos j + cos k, where ,  and  are the angles of n between x-, y-, and z-axes, respectively.  Then


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )\b\bc\{( \f((F1, (x ) + \f((F2, (y ) + \f((F3, (z ) )  dx dy dz



=   EQ \i(,, )\d\ba8()\i(S,, )( F1 cosa + F2 cosb + F3 cosg )  dA



=   EQ \i(,, )\d\ba8()\i(\s\do12(S*),, )( F1 dy dz  +  F2 dz dx  +  F3 dx dy ) 
[Example]  
F  =  7 x i - z k


S  :
x2 + y2 + z2  =  4

Please evaluate   EQ \i(,, )\d\ba8()\i(S,, ) F•n dA

[Solution] 

Method I - Use the parametric representation:


S  :
r  =  2 cos v cos u i  +  2 cos v sin u j  +  2 sin v k


ru  =  - 2 cos v sin u i  +  2 cos v cos u j


rv  =  - 2 sin v cos u i  -  2 sin v sin u j  +  2 cos v k
(
N  =  ru ( rv

n  =  N/|N|  =  cos v cos u i + cos v sin u j + sin v k

F•n  =  14 cos2v cos2u - 2 sin2v

(
 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i( ,, ) F•N du dv  =   EQ \i(,, )\d\ba8()\i( ,, ) F•n |N| du dv



=  64 
  Method II - Use the divergence theorem:


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV  

Since


(•F  =   EQ \f((Fx, (x )   +   EQ \f((Fy, (y )   +   EQ \f((Fz, (z )   =  7 - 1  =  6


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) 6 dV  =  6 V  =  6   EQ \f(4, 3 )   23  =  64 
[Example]
Calculate the surface integral of the vector function



F  =  x i  +  y j
over the portion of the surface of the unit sphere  x2 + y2 + z2  =  1  above the xy-plane, z ( 0.

[Solution]

This surface integral has been evaluated previously.  Here we'd like to calculate it via divergence theorem.  Note that the divergence of F is


(•F  =   EQ \f((Fx, (x )   +   EQ \f((Fy, (y )   +   EQ \f((Fz, (z )   =  2

we thus have


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV  =    EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) 2 dV  



=  2 (volume of the hemisphere)  



=  2  EQ \f(1, 2 )  \f(  4 p  , 3 )   =   EQ \f(  4 p  , 3 ) 
However, the boundary surface of the hemisphere includes not only the surface of the unit sphere  x2 + y2 + z2  =  1  above the xy-plane S1, but also the circular disk surface bounded by the x2 + y2  1 on the xy-plane S2.  i.e.,


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(S1,, ) F•n dA  +   EQ \i(,, )\d\ba8()\i(S2,, ) F•n dA

Note that the outward unit normal vector of the surface S2 is


n2  =  - k
(
F•n2  =  ( F  =  x i  +  y j )•( - k )  =  0

(
 EQ \i(,, )\d\ba8()\i(S2,, ) F•n dA  =  0


 EQ \i(,, )\d\ba8()\i(S1,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  -    EQ \i(,, )\d\ba8()\i(S2,, ) F•n dA  =   EQ \f(  4 p  , 3 ) 
[Example]
Compute   EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  where  F  =  x2 i + 2 y j + 4 z2 k and S is the surface of the cylinder x2 + y2  4,  0  z  2.

[Solution]

Note that the surface S is the closed surface consisting of the cylinder x2 + y2 = 4 (0  z  2) and the circular disks z = 0 and z = 2 ( x2 + y2 4 ).  Since


 EQ \i(,, )\d\ba8()\i(S,, ) F•n dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV

and
(•F  =  2 x + 2 + 8 z

(
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV  =  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( 2 x + 2 + 8 z )  dx dy dz



=   EQ \i(0,2, )\i(0,2p, )\i(0,2, )( 2 r cosq + 2 + 8 z )  r dr d dz



=  80 
[Exercises]  
Please read the Problem sets on p. 509~510, and p. 514~515 of the Textbook.

Various Forms of Divergence Theorem
[Example]
Show that   EQ \x( \i(,, )\d\ba8()\i(S,, )n´F dA  =  \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(´F dV ) ( Curl Theorem ) 
[Proof]


The divergence theorem states that


 EQ \i(,, )\d\ba8()\i(S,, ) n•(F(C) dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•(F(C) dV

where C is a constant vector.  But


n•(F(C)  =  ( n F C )  =  (n(F)•C  =  C•(n(F)

and
(•(F(C)  =  C•(((F)  F•(((C)  =  C•(((F)  





(Since C is a constant vector, ((C  =  0)


 EQ \i(,, )\d\ba8()\i(S,, ) n•(F(C) dA  =   EQ \i(,, )\d\ba8()\i(S,, ) C•(n(F) dA  =  C• EQ \i(,, )\d\ba8()\i(S,, )(n´F)  dA

and
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•(F(C) dV  =  C•  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) ((F dV

thus, from the divergence theorem,


C• EQ \i(,, )\d\ba8()\i(S,, )(n´F)  dA  =  C•  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) ((F dV

If the above identity is valid for an arbitrary constant vector C, we need


 EQ \i(,, )\d\ba8()\i(S,, ) n(F dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) ((F dV

(q.e.d.)

[Example]
Prove that
 EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, (f) dV  =  \i(,, )\d\ba8()\i(S,, )f n dA ) 
(Gradient Theorem)
[Proof]

Define
F  =   C
where C is a constant vector.


(•F  =  (•(C)  =  (•C + C•(  =  C•(









( since (•C = 0 )

and
F•n  =   C•n
thus
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (•F dV  =   EQ \i(,, )\d\ba8()\i(S,, ) F•n dA    becomes


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, C•(f)  dV  =   EQ \i(,, )\d\ba8()\i(S,, )  C•n dA

or
C•  EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, (f)  dV  =  C•  EQ \i(,, )\d\ba8()\i(S,, )  n dA

Since C is an arbitrary constant vector, we need


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, (f)  dV  =   EQ \i(,, )\d\ba8()\i(S,, )  n dA

[Example]   Prove the Green's first formula and Green's second formula, i.e.,


 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g + (f•(g )  dV  =   EQ \i(,, )\d\ba8()\i(S,, ) f  EQ \f((g, (n )  dA

and
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g - g (2f )  dV  =   EQ \i(,, )\d\ba8()\i(S,, )( f \f((g, (n )  -  g \f((f, (n )  )  dA

where n is the outward unit normal vector to the surface S.

[Proof]  

(1)
Let
F  =  f (g


(•F  =  (•( f (g )  =  f (2g  +  (f•(g


F•n  =  n•( f (g )  =  f ( n•(g )

where 


n•(g  =  directional derivative of g in the direction of n



=   EQ \f((g, (n ) 

 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g + (f•(g )  dV  =   EQ \i(,, )\d\ba8()\i(S,, ) f  EQ \f((g, (n )  dA 
(A)

(2)
Similarly, we have



 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( g (2f + (g•(f )  dV  =   EQ \i(,, )\d\ba8()\i(S,, ) g  EQ \f((f, (n )  dA 
(B)

(A) - (B)
(

 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f (2g - g (2f )  dV  =   EQ \i(,, )\d\ba8()\i(S,, )( f \f((g, (n )  -  g \f((f, (n )  )  dA

 [Exercise]  If (2  =  0  everywhere in a region V bounded by a closed surface S, show that

(1)
 EQ \i(,, )\d\ba8()\i(S,, )\f((f, (n )  dA  =  0

( Hint:  Let F = ( )

(2)
 EQ \i(,, )\d\ba8()\i(S,, )   EQ \f((f, (n )  dA  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )((f) 2 dV


where (()2  =  ((( and that  is zero everywhere on S.

Note that if (2 = 0,    is called a Harmonic function.

[Exercise]
Show that

(1)
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) (2 dV  =   EQ \i(,, )\d\ba8()\i(S,, )\f((f, (n )  dA

(2)
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )( f(2f + ((f)2 )  dV  =   EQ \i(,, )\d\ba8()\i(S,, )   EQ \f((f, (n )  dA

(3)
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) [ (4 - ((2)2 ] dV  =   EQ \i(,, )\d\ba8()\i(S,, )( f \f(((2f, (n )  -  ((2f) \f((f, (n ) )  dA

where (4  =  (2((2)

Reviews on Vectors

1.
Physical ( Geometric ) Meanings of a(b, a(b, a • ( b ( c ), etc.
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2.
Position Vector r = x i + y j + z k ,
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3.
Position Vector of a Line:  r = r(t)  = x(t) i + y(t) j + z(t) k.

r'(t)  : 
Tangent Vector of C at P


u =   EQ \f( r'(t) , |r'(t)| )   :  
Unit Tangent Vector of C at P ∫ u(t)

then
r +  r'(t) : 
Position Vector of a Point T on the Tangent Line

4.
r'(t), Arc Length Function s(t), r(s), r'(s), etc.
Length of a Curve
l  =   EQ \i(a,b, \r(r'•r') ) dt    
 (from t = a to b)

Arc Length Function
s(t)  =   EQ \i(a,t, \r(r'•r') d\o(t,\s\up8(~)))  
Unit Tangent Vector
u  =   EQ \f(r'(t), |r'(t)| )   =    EQ \f(  dr(s)  , ds ) 
5.
Particle Path, Velocity, Acceleration, Tangential and Normal Accelerations.

v  =   EQ \f(dr, dt )   =  r'

where t: time


|v|  =   EQ \r(r'•r' )   =   EQ \f(ds, dt )   =  arc length/unit time  =  speed

v  =  u  EQ \f(ds, dt )   =  v u  
( v =  EQ \f(ds, dt )   =  speed ) where u is a unit tangent vector.

a  (   EQ \f(dv, dt )   =   EQ \f(d2r, dt2 ) 
a contains
  EQ \b\lc\{( \a\al(tangential acceleration   \f(d2s, dt2 ) u  =  \f(dv, dt ) u, ,normal acceleration     ( \f(ds, dt ) )\s\up10(2) \f(du, ds )  ) ) 
atang  =  ( a•u ) u  =   EQ \f( ( a•v ) v , |v|2 ) 
anormal  =  a  -  atang 

6.
Curvature , Torsion , Unit Principle Normal Vector p, Unit Binormal Vector b.

u(s)  (   EQ \f( dr(s) ,ds)    :  unit tangent vector


p(s)  (   EQ \f(1, k ) \f(du, ds )   :  unit principal normal vector


b(s)  (  u ( p  :  unit binormal vector

  =   EQ \b\bc\|(\f(du(s), ds ))   =  |u'(s)|  =  |r''(s)|  =  curvature

  (   EQ \f(1, k )   =  radius of curvature

b'  =  -  p
where  is the torsion.
7.
Gradient (f ( Direction and Magnitude ), Contour, Divergence (•v, Curl ( ( v.
(f  =   EQ \f((f, (x )  i +  EQ \f((f, (y )  j +  EQ \f((f, (z )  k
 EQ \f(df, ds )   =  (f• EQ \f(dr, ds ) 
or
df  =  (f•dr
dr  (f   where dr  is on the surface f = constant.
(•v  =  div v  =    EQ \f((v1, (x )  +  EQ \f((v2, (y )  +  EQ \f((v3, (z )  

( ( v  =  Curl of v  =   EQ \b\bc\|(\a\co3\vs10\hs12( i, j, k, \f(( ,(x), \f(( ,(y), \f(( ,(z), v1, v2, v3 )) 
(•((f)  =  (2f  =  div(grad f)  =  Laplacian of f =   EQ \f((2f, (x2 ) +   EQ \f((2f, (y2 ) +   EQ \f((2f, (z2 ) 
8
Vector Analysis in Curvilinear Coordinates
(Orthogonal Coordinate Systems)

(1)
Coordinates

RCC
Cylindrical
Spherical

(x, y, z)
(r, , z)
(r, , )

x1, x2, x3
x1 = r cos
x1 = r cos sin

x2 = r sin
x2 = r sin sin

x3 = z
x3 = r cos
 [image: image59.png](x,y,2) or (r,6,2)

()




9.
Line Integral  EQ \i(C, , F•dr)    ,   O EQ \d\ba9()\i(C, , F•dr)  ,  

(i)
 EQ \i(C, , F•dr)   =   EQ \i(a,b, F•(  \f(dr(t), dt )  ) dt) 
(ii)
 EQ \i(C, , F•dr)   =   EQ \i(C, , )( Fx dx + Fy dy + Fz dz ) 
(iii)
Line Integrals Independent of Path, F  =  (f where f is the potential of F.
Need:


(a)
Fx, Fy, Fz and their first derivatives are continuous in D.


(b)
they are exact, i.e., 



 EQ \f( (Fx , (y )   =   EQ \f( (Fy , (x )   ;     EQ \f( (Fx , (z )   =   EQ \f( (Fz , (x )   ;      EQ \f( (Fy , (z )   =   EQ \f( (Fz , (y ) 


or  ( ( F  =  0

(c)
D is simply connected.

If F is conversive, then      EQ \i(C, , F•dr)   =   EQ \i(C, , ) df  =  f(P1) - f(P0)  
10.
Surface Integral ( x-y plane )

(i)
Reversing the Order of Integration   EQ \i(0,2, )\i(y,2, )  e EQ \s\up8(x2)  dx dy  =   EQ \i(0,2, )\i(0,x, ) e EQ \s\up8(x2)  dy dx

(ii)
Change of Variables (Change of Coordinates)



 EQ \i(,, )\d\ba6()\i(R,, ) f(x, y) dx dy  =   EQ \i(,, )\d\ba6()\i(R*,, ) f(u, v)  EQ \b\bc\|(\f(((x,y), ((u,v) ))  du dv
where


 EQ \b\bc\|(\f(((x,y), ((u,v) ))   =  | Jacobian |  =   EQ \b\bc\║(\a\co2\hs8\vs8( (x/(u, (x/(v, (y/(u, (y/(v) ) 
11.
Green's Theorem  
 EQ \x( \i(,, )\d\ba6()\i(R,, )\b\bc\[( \f( (F2 ,(x) - \f( (F1 ,(y) ) dx dy  =  O\d\ba9()\i(C, , )F1 dx + F2 dy ) 
(i)
 EQ \x(  \i(,, )\d\ba6()\i(R,, )((´F)•k dx dy  =  O\d\ba9()\i(C, , )F•dr ) 
(ii)
 EQ \x( \i(,, )\d\ba8()\i(R,, )(•F dx dy  =  O\d\ba9()\i(C, , )F•n ds ) 
(iii)
 EQ \x( \i(,, )\d\ba8()\i(R,, )(2w dx dy  =  O\d\ba9()\i(C, , )\f((w, (n ) ds ) 
(iv)
Calculate the area of a closed curve by Green's theorem:


 EQ \i(,, )\d\ba8()\i(R,, ) dA  =  O EQ \d\ba9()\i(C, , ) x dy  =  O EQ \d\ba9()\i(C, , ) - y dx  =   EQ \f(1, 2 )  O EQ \d\ba9()\i(C, , )(- y dx + x dy) 
12.
Surface Integral ( in general )

(i)
Parametric Representation of the Position Vector:  r(u, v) 

(ii)
Tangent Plane, Normal Line, and Unit Normal Vector
Normal Vector:  
N  =  ru ( rv  or  (g

Unit Normal Vector:  n  =   EQ \f(N, | N | )   =   EQ \f(ru ´ rv, | ru ´ rv | )   or  n  =   EQ \f((g, | (g | ) 
(iii)
Methods of Calculation of Surface Integrals

(a)
Method I - by parametric integration

 EQ \x( \i(,, )\d\ba8()\i(S,, )F•n dA  =  \i(,, )\d\ba8()\i(R,, )F(r(u,v))•N(u,v) du dv )  
or
 EQ \i(,, )\d\ba8()\i(S,, )F•n dA  

 EQ  =  \i(,, )\d\ba8()\i(R,, )( F1 N1 + F2 N2 + F3 N3 ) du dv  
 EQ \x( \i(,, )\d\ba8()\i(S,, )G(x, y, z) dA  =  \i(,, )\d\ba8()\i(S,, )G(u, v) | N | du dv ) 
where N =   ru ( rv
(b)
 EQ \x( \i(,, )\d\ba8()\i(S,, )F•n dA =  ± \i(,, )\d\ba8()\i(S1,, )F1 dy dz ± \i(,, )\d\ba8()\i(S2,, )F2 dz dx ± \i(,, )\d\ba8()\i(S3,, )F3 dx dy ) 
(c)
 EQ \x( \i(,, )\d\ba8()\i(S,, )G(x,y,z) dA  =  \i(,, )\d\ba8()\i(R,, )G(x,y,f(x, y)) \r( 1 + fx2 + fy2 ) dx dy ) 
if the surface is represented by z  =  f( x , y )

(d)
By Divergence Theorem ( on a Closed Surface )
13.
Stokes's Theorem

 EQ \x( \i(,, )\d\ba8()\i(S,, )((´F)•n dA = O\d\ba9()\i(C, , )F•dr = O\d\ba9()\i(C, , )F•r'(s) ds ) 
14.
Volume Integral

 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(x,y,z) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(x,y,z) dx dy dz

- RCC

or
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,z) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,z) r dr d dz

- Cylindrical Coor.

or
 EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,) dV  =   EQ \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, ) F(r,,) r2 sin dr d d
- Spherical Coor.
15.
Divergence Theorem of Gauss and Its Variations

 EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(•F dV  =  O\d\ba10()\i(,, )\d\ba8()\i(S,, )F•n dA )  
( Divergence Theorem )

 EQ \x( \i(,, )\d\ba8()\i(S,, )n´F dA  =  \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, )(´F dV ) 
( Curl Theorem )
 EQ \x( \i(,, )\d\ba8()\i(V,, )\d\ba8()\i(,, (f) dV  =  \i(,, )\d\ba8()\i(S,, )f n dA ) 
( Gradient Theorem )

� 	Example from Zill, D. G., and Cullen, M. R., Advanced Engineering Mathematics",  p. 186, (1992).
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